
BOĞAZİÇİ UNIVERSITY
DEPARTMENT OF MANAGEMENT INFORMATION SYSTEMS

Economixim: Simulating a National Economy with
Agent-Based Modeling

YUSUF COŞKUN

June, 2025

ABSTRACT... 2
ÖZET..2
1. INTRODUCTION..3
2. MODEL DESCRIPTION...5

2.1. OVERVIEW... 5
2.1.1. PURPOSE AND PATTERNS..5

Purpose.. 5
Patterns.. 5

2.1.2. ENTITIES, STATE VARIABLES, AND SCALES...6
Entities & State Variables... 6
Scales...9

2.1.3. PROCESS OVERVIEW AND SCHEDULING.. 10
2.2. DESIGN CONCEPTS..13

Basic Principles.. 13
Emergence... 13
Adaptation.. 15
Objectives...18
Learning..18
Prediction..19
Sensing...19
Interaction...21
Stochasticity... 23
Collectives.. 25
Observation.. 25

2.3. DETAILS..28
2.3.1. INITIALIZATION... 28
2.3.2. INPUT DATA...30
2.3.3. SUBMODELS...31

3. RESULTS...53
4. CONCLUSION... 59
REFERENCES...61

1

ABSTRACT
Agent-based models (ABMs) have made economic policy-making significantly easier

and have brought the discussion to an unbiased plane. However, most existing models are
either (a) using representative agents and are macroeconomics focused or (b) focused on a
specific aspect of an economy (e.g. tax policy). To bridge this gap, this study introduces
Economixim, an agent-based economic simulation built on top of the Mesa framework,
designed to allow policy-makers to make micro-level adjustments in an economy and
capture microeconomic and macroeconomic emergent behaviors. The goal of this paper and
tool is to simulate an economy involving firms, households, individual persons and a
government that are equipped with adaptive processes.

​ The simulation facilitates the emergence of economic phenomena like market
equilibrium, social welfare, government fiscal sustainability, and labor market dynamics. By
modeling the simulation with heterogeneous agents, the model reveals the impact of
economic policies and micro-level decisions that would otherwise be observed weaker in a
homogeneous-agent model.

ÖZET
​ Aktör Tabanlı Modeller (ABM’ler), ekonomi politikalarının belirlenme sürecini önemli
ölçüde kolaylaştırmış ve bu sürecin tarafsız bir sahaya çekilmesini sağlamıştır. Ancak
mevcut ekonomik ABM’lerin çoğu ya makroekonomiye odaklanmış, ya temsili aktörler
kullanmış, ya da ekonominin daha küçük bir kesitine (ör. vergi sistemi) odaklanmıştır. Bu
çalışma, bu soruna daha dengeli bir çözüm sunma amacıyla geliştirilen “Economixim”
ekonomi simülasyonunu açıklama amacıyla yapılmıştır. Economixim, ekonomi politikaları
üzerine tartışan ekonomistlerin ekonomide mikro düzeyde ayarlamalar yapabilmesine ve
hem mikroekonomik hem de makroekonomik ölçekte ortaya çıkan davranışları
gözlemleyebilmesine olanak sağlayacak şekilde tasarlanmıştır. Bu aracın temel amacı,
şartlara uyum sağlayarak karar verme yetisine sahip şirketler, haneler, bireyler ve bir devlet
yapısından oluşan bir ekonomiyi simüle etmektir.

Simülasyon, arz-talep dengesi, refah, ülke ekonomisi ve işgücü piyasası gibi
ekonomik olguların ortaya çıkışını mümkün kılmaktadır. Simülasyondaki aktörlerin heterojen
şekilde modellenmesi, homojen şekilde modellenen aktörlerin bulunduğu bir simülasyonun
aksine, ekonomik politikaların ve mikro düzeyde alınan kararların etkisinin güçlü bir şekilde
gözlemlenebilmesini sağlamaktadır.

2

1.​ INTRODUCTION
The study of understanding and developing complex economic systems has led to

the creation of various modeling methods. While traditional macroeconomic models, such as
DSGE, have been used for macroeconomic analysis for a long time, their reliance on
representative agents, rational expectations, and market clearing assumptions have been
criticised for not capturing real-world complexities such as heterogeneous behavior enough
(Dawid & Delli Gatti, 2018; Heckbert et al., 2010). Agent-Based Modeling (ABM) has
emerged as a solution to this criticism, with a "bottom-up" approach to simulate economic
systems by focusing on the interactions of autonomous, diverse, and granular entities (Macal
& North, 2009; Tesfatsion, 2006). This allows for the exploration of emergent
macroeconomic behavior arising from micro-level decisions, creating a sort of digital
laboratory to test different policies and techniques in (Farmer & Foley, 2009). The flexibility of
ABM allows the implementation of behavioral rules, changing models from having only strict
utility maximization to including heuristics, social influence, and learning. Foundational works
in the ABM field, such as Schelling's (1971) model of segregation and Epstein and Axtell's
(1996) "SugarScape," showcase the power of ABMs to demonstrate how simple individual
interactions can generate complex, often counterintuitive, patterns. These counterintuitive
results of ABMs were something that we also witnessed during the development of
Economixim.

The application of ABM in economics has grown thanks to advancements in computational
power and the development of modeling toolkits such as Mesa, NetLogo, and Repast. These
tools allow researchers to design virtual economies where they can explore the
consequences of different behavioral rules and policy interventions.

In the area of macroeconomics, ABMs have been developed to simulate national and global
economies, with heterogenous agents that interact with each other. For example,
frameworks like BeforeIT.jl (Glielmo et al., 2025) simulate national economies with millions of
heterogenous households, firms, and financial institutions, calibrated with detailed real-world
data. Delli Gatti et al. (2018) provides a comprehensive toolkit for such projects. Earlier
influential works like Assenza, Delli Gati, and Grazzini (2015) explored emergent behavior in
macroeconomic ABMs with detailed capital and credit mechanisms. These models aim to
reproduce empirical facts, and to provide economic forecasts.

A recent and important advancement in economic ABMs is the addition of learning and
adaptation. Rather than relying only on predefined rules, more and more ABMs are
implementing agents with the ability to learn from their environment and adjust their
strategies. Reinforcement Learning (RL) has become a leading technique for this purpose.
For example, Osoba et al. (2020) explored the use of RL agents in a policy-focused ABM,
and demonstrated that RL agents can learn reward-maximising behaviors in situations such
as minority games and disease transmission models. Brusatin et al. (2024) substituted a
variable number of Firms with RL agents in a macroeconomic ABM to study the impact of
varying degrees of firm rationality on economic outcomes, finding that RL firms could learn
complex profit-maximizing strategies. "The AI Economist" by (Zheng et al., 2020) uses
multi-agent RL to design optimal tax policies by simulating an economy where both AI
agents and a social planner learn at the same time. Dwarakanath et al. (2024)'s

3

"ABIDES-Economist" is a multi-agent simulator featuring heterogeneous households, firms,
a central bank, and government agents that can learn. These studies show the potential of
learning agents to discover more realistic and adaptive economic behaviours.

ABMs are also powerful tools for policy analysis, allowing for the evaluation of policy impacts
in a controlled computational environment (ex-ante analysis, meaning measuring the impact
of policies before they are done in the real world). Salle et al. (2013) utilized an ABM to
assess inflation targeting regimes within a learning economy, showing the importance of
central bank credibility. The ability to model heterogeneous responses to policy changes is
an advantage of ABMs over representative-agent models.

While the application of ABM in economics has grown, there is still a need for models that
can integrate diverse agent types and their interactions to provide insights for both
theoretical exploration and policy analysis. Many existing models either focus on general
macroeconomic results with simplified agent behaviors or specific micro-aspects, such as
tax policy (Zheng et al., 2020) or market microstructure (Yang et al., 2025) in isolation.

This paper introduces Economixim, an agent-based economic simulation developed using
the Mesa framework. Economixim is designed to model a mixed economy comprising Firms
(differentiated by product type and operational area), Households (that aggregate individual
Person agents and consume Firm products), Persons (characterized by skills and
employment status), an Intermediary Firm (representing input suppliers), and a Government
agent (overseeing fiscal policy and economic monitoring). These agents make adaptive
decisions related to consumption, savings, production, pricing, inventory management,
employment, wages, and public spending. The primary objective of Economixim is to create
a base platform for exploring how granular interactions and policy interventions lead to
emergent macroeconomic results like market equilibrium dynamics, price and inventory
adjustments, labor market fluctuations, shifts in social welfare, and the evolution of
government fiscal balances. By adhering to the ODD (Overview, Design Concepts, Details)
protocol (Grimm et al., 2006, 2020), Economixim aims to provide a replicable framework for
exploring the dynamics of a multi-agent economy.

The model code can be found here:
https://github.com/yyusufcoskun/Economyxim

4

https://github.com/yyusufcoskun/Economyxim

2.​ MODEL DESCRIPTION
The model description attempts to follow the ODD (Overview, Design Concepts,

Details) protocol for describing individual and agent-based models (Grimm et al. 2006), as
updated by Grimm et al. (2020).

2.1.​ OVERVIEW
2.1.1.​ PURPOSE AND PATTERNS

Purpose
The primary purpose of the Economixim model is to simulate an economy involving firms,
households, persons, and a government agent to explore emergent economic outcomes
resulting from micro-behaviors. Specifically, it explores how granular agent decisions
regarding consumption, savings, production, pricing, inventory management, employment,
wages, taxation, and public spending lead to system-level phenomena like market
equilibrium, price dynamics, labor market dynamics, inventory fluctuations, and overall
economic indicators like GDP and inflation. The model serves as a virtual laboratory for
theoretical exploration of economic interactions and is designed to help better understand
economic theories, in an unbiased and agent-driven simulation environment.

Population characteristics such as birth, death, and marriage are not included in this model.
The creation of new product lines from firms, supply chain dynamics and bankruptcy are also
excluded from the model. A national banking system and the modeling of international trade
were not designed due to such designs pushing the project beyond its scope.

Patterns
The evaluation of the model’s success is done by way of comparing results to multiple
emergent patterns commonly observed or expected in real-world economies:

1.​ Market Equilibrium: If prices and production levels adjust over time in response to
supply and demand. Firms are expected to raise prices when demand is high relative
to inventory and lower them when inventory is high or sales are poor. Successful
reproduction of this pattern indicates that the agent decision rules for pricing and
production are capable of leading to market-clearing.

2.​ Inventory Dynamics: If firm inventory levels fluctuate based on demand and
production decisions, differentiating between necessity and luxury goods. It is
expected that firms aim to avoid excessive stockouts or overstocking through
production adjustments

3.​ Household Income: The emergence of different income brackets among
households based on agent skill, employment and wage.

4.​ Consumer Spending Behavior: If household spending patterns change based on
income brackets and available goods. This will show the model's ability to represent
the impact of wealth on consumption structure.

5.​ Firm Profitability: The distribution of profits across different types of firms (necessity
vs. luxury) and firm areas (physical, service etc.). This pattern will validate the
model's ability to simulate competitive dynamics and the financial performance of
heterogeneous businesses.

5

6.​ Inflationary Pressure: If the general price level in the economy changes over time in
response to aggregate demand, supply metrics, and firm production adjustments.

7.​ Labor Market Dynamics: If the unemployment rate fluctuates based on firms’ hiring
and firing decisions driven by profitability and labor needs, and if a person’s skill
contributes to the nature of the labor market. This will measure the model’s
representation of the labor market, which is crucial for understanding income and in
turn demand generation.

8.​ Welfare: How income, consumption, saving and public spending levels affect social
welfare.

2.1.2.​ ENTITIES, STATE VARIABLES, AND SCALES
Entities & State Variables
The following agents are included in the model: government, firms, households and persons.
Banks, unions, supply chain members, and international trade mechanics are not included in
the model as their impact would only be realised outside of the project scope.

The state variables of entities are defined as “variables that are not calculated from other
state variables and do not include variables that are readily calculated from other variables”
according to the ODD protocol. The protocol also states that a state variable defines “how an
entity’s state varies over time or a distinguishing value of entities of the same type”. The
following descriptions are made to match this definition of a state variable.

Government Agent is a single entity that represents the governmental body responsible for
fiscal policy. Although its name suggests purely governmental affairs, this agent also
functions as the country’s central bank in the model. It exists to simulate the impact of
government taxation and spending on the economy, firm behavior and household welfare. It
also serves as a collector of aggregate economic statistics such as GDP, inflation, and
unemployment. Almost all variables this agent possesses are calculated from other
variables.

Firm Agents are multiple entities representing individual firms that engage in production and
sales. These firms also interact with the labor market by hiring/firing Person Agents (as
described in the following entity descriptions). Firms can be of two types: necessity and
luxury. Each firm type also has “business areas” (e.g. physical, service, technical), which are
abstractions created to complement Person Agent skill and provide richer labor market
strategies. They exist to model the supply of the economy, labor demand and the dynamics
of different market sectors. Their adaptive behaviors are crucial for price information and
market equilibrium.

6

Variable Name Variable type and
units

Variable range Represents

reserves Currency, Float,
Dynamic

Real numbers Government’s
financial reserves

Variable Name Variable type
and units

Variable range Represents

firm_type String, Static Necessity - Luxury Firm’s type

firm_area String, Static One of: physical,
service, technical,
creative, social,
analytical

Business area of
firm

capital Currency, Float,
Dynamic

Real numbers The firm's
accumulated
financial wealth

inventory Units, Integer,
Dynamic

>= 0 Current stock of
unsold goods

production_capacity Integer, Dynamic >= 0 Maximum
production per step

production_level Percent, Float,
Dynamic

0.1-1.0 Proportion of
capacity used for
production

production_cost Currency, Float,
Static

>= 1.0 Cost of producing
one unit of a product

product_price Currency, Float,
Dynamic

> min_price Selling price per unit

markup Float, Dynamic >= 0.5 Multiplication added
to cost per unit to
determine selling
price

initial_employee_target Integer, Static Different for every
firm

Firm’s employee
count at the
beginning of the
simulation run

num_employees Integer, Dynamic >= 1 Number of Persons
employed

entry_wage Currency,
Integer, Static

> 0 Base wage for
entry-level
employees

Intermediary Firm Agent is a firm that represents the “raw material” producers that Firm
Agents buy from. It receives demand from Firm Agents, and distributes their revenue as
wages to their employees. It exists to simulate the “raw materials” sector and to connect the
circular cash flow by keeping Firm production costs inside the economy. It has no variables
that suit the definition previously made for state variables, all variables are a result of a
calculation, which will be discussed in the Submodels section.

7

Household Agents are multiple entities that represent households in an economy. Each
household is composed of one or more Person Agents. Households aggregate Person
income, and make consumption and saving decisions. The aggregation of Person data
combined with specific household variables also result in a social welfare calculation made
on a per house basis. They exist to simulate households in an economy, where income is
aggregated and consumption decisions are made, and to serve as a unit for measuring
social welfare.

Variable Name Variable type and
units

Variable range Represents

num_people Integer, Static 1 - 5 Number of
people/number of
Persons to be
generated per
household

income_tax_rate Percent, Static 0.15, 0.20, 0.27
(based on income
bracket)

Income tax rate
applied to
household income,
set by Government

Person Agents are multiple entities that each belong to a Household Agent. Persons
represent individuals in the labor force, and possess skill levels in a certain area (i.e. areas
that are matched one-to-one with Firm Agent business areas), seek employment, and earn
wages. Persons can also improve their skill level if below the entry-level threshold. They
exist to model individual-level characteristics like skill, employment status, and wage, which
in turn affect Household calculations.

Variable Name Variable type and
units

Variable range Represents

household Object Reference,
Static

N/A Household to which
the Person agent
belongs to

employer Object Reference,
Dynamic

N/A Firm to which the
Person agent works
for

skill_type String, Static One of: physical,
service, technical,
creative, social,
analytical

Skill area of the
Person agent

skill_level Integer, Dynamic 1-100 Skill level of the
Person agent in
relevant skill_type

job_seeking Boolean, Dynamic True/False Whether the person

8

(initially True by
default, however
Firm initialization
makes sure hired
Persons set it as
False)

is actively looking
for a job

wage Float, Dynamic >= 0 Current wage,
10000 if
unemployed
(Government
unemployment
benefit)

labor Float, Static skill_level/random(3,
5)

Labor addition to
Firm production
capacity

work_hours Integer, Dynamic
(although in its
current state, every
Person has the
same static value -
40)

30 - 45 Preferred weekly
work hours

job_level String, Dynamic One of: entry, mid,
senior

Seniority in
Employer Firm,
None if unemployed

Economy Model is the environment of the simulation. It manages the collection of agents,
holds the data collector, and controls the simulation.

Variable Name Variable type and
units

Variable range Represents

current_step Integer, Dynamic 0 - 60 The current step
count of the
simulation run

Scales
The model runs at a quarter time step (i.e. 3 months) as economic reports are generally
described in quarters. Simulations were run for 60 quarters which amount to 15 years. The
model does not explicitly represent geographic space. Interactions (like purchasing or hiring)
are not based on spatial proximity. The model is spatially abstract to simplify the model and
focus on the core economic interactions between agents, rather than the complexities of
spatial economics.

9

2.1.3.​ PROCESS OVERVIEW AND SCHEDULING
This section will describe what the model does as it executes: which entity or entities,
execute which process, that update which aspects of the simulation, and the order in which
the entities execute the process.

The sequence of actions taken during initialization are discussed in the relevant chapter.

The scheduling of processes within a single simulation step is as follows:

1.​ Government Agent - Fiscal and Economic Monitoring Phase

i.​ The GovernmentAgent executes its step submodel.
ii.​ Inflation is calculated via the _calculate_inflation_rate submodel.
iii.​ Welfare payments (unemployment benefits and low-income transfers) are

calculated and distributed via the
_calculate_and_distribute_unemployment_payments and
_calculate_and_distribute_low_income_transfers submodels.
Government reserves are updated.

iv.​ Government spending on necessity goods is executed via the
_execute_government_necessity_spending submodel. Government
reserves and records of purchases are updated.

v.​ Taxes (household income and corporate) are collected via the
_collect_taxes and _collect_corporate_taxes submodels,
respectively. Both functions collect taxes from the values Households and
Firms provide in the previous step. Government reserves are updated.

vi.​ Key economic indicators (unemployment rate, GDP, Gini coefficient) are
calculated via the _calculate_unemployment_rate, _calculate_gdp,
and calculate_gini_coefficient submodels, respectively.

2.​ Household Agents - Consumption Phase
i.​ All HouseholdAgents execute their step submodel.
ii.​ Each household calculates its income, determines income and wealth

brackets
iii.​ Based on their wealth bracket, Household makes consumption decisions for

necessity and luxury goods. This involves interactions with FirmAgents via
the _calculate_cost_and_buy and _spend_on_luxuries submodels
(which in turn call FirmAgent.fulfill_demand_request).

iv.​ Household financial metrics (expenses, savings, debt) and welfare indicators
(health, overall welfare) are updated.

3.​ Firm Agents - Production and Adaptation Phase
i.​ All FirmAgents execute their step submodel.
ii.​ Firms update historical price records.

10

iii.​ Production operations occur: firms produce goods based on their current
production_level, adding to inventory.

iv.​ Total labor and wage costs are calculated, and production material costs are
sent (as demand) to the IntermediaryFirmAgent via its
receive_firm_demand submodel.

v.​ Financial calculations are performed: revenue (from sales made to
households and government), profit (after accounting for costs and
corporate taxes paid to the government), and capital are updated.
revenue_per_employee is calculated.

vi.​ Historical metrics (demand_history, profit_history, average_demand)
are updated, and step-specific counters are reset.

vii.​ Firms adapt their operations:
a.​ product_price is updated, via the adjust_price submodel.
b.​ production_level is updated, via the adjust_production

submodel.
c.​ Workforce size (employees) is adjusted (hiring or firing), via the

adjust_employees submodel (which calls hire_new_employee
or fire_least_productive).

viii.​ units_sold_this_step and total_requested_this_step are reset.

4.​ Intermediary Firm Agent - Revenue and Wage Distribution Phase
i.​ The IntermediaryFirmAgent executes its step submodel.
ii.​ Demand accumulated from Firms via the receive_firm_demand submodel

is aggregated.
iii.​ Aggregated demand is turned directly into revenue.
iv.​ revenue is divided by num_employees and distributed as wages to

employees.
v.​ Demand is reset.

5.​ Person Agents - Skill and Status Update Phase
i.​ All PersonAgents execute their step submodel.
ii.​ If their skill_level is below the minimum skill required to get hired for an entry

position in their skill_type (all Persons of this type are naturally unemployed):
a.​ job_seeking is updated as False.
b.​ They study to increase their skill by a marginal amount. (This cycle

continues until they reach the minimum skill threshold.)

6.​ Data Collection:​

●​ The model's DataCollector gathers specified agent-level variables.

11

After these 6 phases, the simulation advances 1 step.

The reasoning behind this scheduling order is to ensure each agent can interact with the
necessary agents in a logical order.

The Government steps first to set the fiscal stage by setting tax brackets, collecting taxes
based on the previous period's income/profit, and making initial expenditures (welfare
spending and purchases). This provides a stable economic environment and initial
conditions for the current step's household and firm decisions.

Households move next after determining their income including Government transfers, and
generate a demand signal for Firms.

Firms then receive demand from Households and the Government. They fulfill this demand
from their existing inventory, then produce to replenish their inventory based on past demand
trends. Following production and sales, they calculate their financial statuses and adapt their
pricing, production levels, and employment for the next period. This simulates businesses
reacting to the market.

While Firms produce, they send their costs as demand to the Intermediary Firm, which acts
as an abstraction for raw material purchases Firms make. This structure allows cash to not
leak out of the economy, as Intermediary Firms channel the money back to the system as
wages.

At the end, Persons update their skills, reacting to their Household status and labor market
conditions shaped by Firm decisions.

This sequence provides decisions that are based on the most recent information available,
while also maintaining a cause-and-effect chain typical of economic cycles.

12

2.2.​ DESIGN CONCEPTS
Basic Principles
The model is based on agent-based modeling principles applied to economics. It simulates
an economy where market outcomes emerge from interactions between agents, which are:
households that try to balance their welfare through spending patterns, profit-seeking firms
and a government that keeps the balance of reserves and social welfare. The model puts
forward the idea that system-level outcomes emerge from individual actions and interactions,
and simulates this via Person Agents.

The model draws on established economic concepts like supply and demand, equilibrium
theory, price-adjusting firms, labor market interactions, social welfare, and basic fiscal policy.
The distinction between necessity and luxury goods, which influences firm inventory
strategies and household consumption patterns, reflects basic consumer theory. The
simulation is designed to validate (or invalidate, based on its results) these theories by
providing a bias-free environment.

A key point of this model is the heterogeneity of agents. Firms, Households, and Persons
differ from each other at the core by way of State Variables.

The model is implemented using the Mesa framework for agent-based modeling in Python.

Emergence
The primary results of the model can be viewed in two categories: emergent and imposed.

Behaviors that are a result of a combination of different interactions and decisions, and that
are not based on singular rules (which generally have recurring or “looping” results) are
classified as emergent behaviors.

Behaviors that result from strict rules that split values or create values are classified as
imposed or rule-based behaviors.

The following are described as emergent behaviors:

1.​ Pricing: Pricing structures emerge from Firms reacting to inventory levels, costs,
sales, and short and long term demand trends.

2.​ Demand: Pricing and the income level of Households directly impact how much
demand is generated during the simulation. Low prices mean high demand, while
high prices mean low demand.

3.​ Market Equilibrium: Due to the pricing and demand structures, market equilibrium
emerges.

4.​ Inflation: Pricing decisions impact the inflation rate, which is the increase in price
over time.

5.​ Production: Production levels, like pricing, emerge from Firms’ decisions based on
household and government demand trends. Also, as each employee adds a certain
amount of production_capacity to the Firm via their labor variable, small
changes can impact the production and sales of Firms.

13

6.​ Firm Profitability: The distribution of profits and whilst not coded, the “survival” or
“failure” of firms, emerges from Firms’ individual ability to manage costs, set prices,
and manage their workforce.

7.​ Employment: Hiring and firing decisions emerge from Firms reacting to their own
profits, the productivity levels of their employees and their interaction with the labor
market which is created by Persons that seek jobs and their skill levels.

8.​ Welfare: The distribution of welfare emerges from individual employment statuses,
wage, spending patterns, savings, preferred work hours, health levels, and
government public spending.

9.​ Gini coefficient: The distribution of income based on employment and household
size creates the base for a Gini coefficient calculation.

10.​Initial values: The single most important aspect of this model’s emergent behavior is
the initialization phase. Initial values such as household count, firm inventory, firm
production capacity, government spending level; and values given to rules such as
market pressure parameters (how much demand and inventory should affect pricing)
completely change the simulation results even when a single change is made. The
difficulty of initialization and the problems it brings will be discussed in the
Initialization section.

The following are described as imposed behaviors:

1.​ Income/Wealth Distribution: While the distribution of income is based on skill,
employment and household size, and is an emergent behavior, the discrete
categorization of income and wealth brackets are imposed by calculations.

2.​ Public Spending: The Government is involved in public spending, which is
calculated as a percentage of their reserves in every step. Depending on their
reserves, less or more demand is generated in the economy, affecting all other
aspects of the simulation.

3.​ Tax Revenue: The income bracket distribution discussed earlier splits Households
into different tax rates, which in turn generate cash inflow for the Government.

14

Adaptation

Agents in Economixim display indirect objective-seeking adaptive behaviors. The following
describes each decision an agent makes during its step, and should not be confused with
each action an agent takes during a step, which was described in the Process Overview and
Scheduling chapter.

Firm Agents

1.​ Production Level Adjustment
Firms adjust their production level during this adaptation.

In order to make this decision, Firms use the following inputs:

-​ Average Demand: Is a weighted average of the demand received by the
Firm over the last 5 steps. Demand from steps closer to the current step are
heavier in weight, while demand from steps further back from the current step
are lighter.

-​ Demand to Inventory Ratio: Is calculated by dividing average demand by
current inventory. This results in a value that describes how much inventory
can cover the demand.

-​ Sell Through Rate: Is calculated by dividing units sold in that step to units
produced in that step. This results in a value that describes what percentage
of newly produced units are sold.

-​ Firm Type: Firms have different minimum production level thresholds and
crisis management strategies based on their firm type - necessity or luxury.

After this decision, the value of the production_level variable changes, ranging
from the minimum threshold set by firm type to 1.

2.​ Price Adjustment
​ Firms adjust their product price and markup levels during this adaptation.
​
​ In order to make this decision, Firms use the following inputs:

-​ Demand History: Is a list of the demand received over the last 5 steps.
-​ Short Term Trend: Is calculated by dividing the last 2 steps’ demand values

to each other, using the demand history list. Represents the change in
demand in the near past.

-​ Long Term Trend: Is calculated by dividing the average of the first 2 entries
in the demand history list by the average of the last 2 entries. Represents the
change in demand over time.

-​ Inventory to Demand Ratio: Is calculated by dividing current inventory to
demand received this step. This results in a value that describes how much
inventory there is compared to demand.

-​ Sell Through Rate: Is calculated by dividing units sold in that step to units
produced in that step. This results in a value that describes what percentage
of newly produced units are sold.

15

-​ Market Pressure: Is a value between -1 and 1, and is calculated via
aggregation after applying rules based on the previous 4 inputs. Represents a
“push” in price depending on the results of the previous inputs.

-​ Firm Type: Firms have different crisis management strategies and market
pressure multiplications based on their firm type - necessity or luxury.

After this decision, the value of the markup variable changes, which in turn affects
the product_price variable due to how it’s calculated.

3.​ Employee Hiring and Firing
​ Firms hire or fire employees during this adaptation.

​ In order to make this decision, Firms use the following inputs:

-​ Profit History: Is a list of profit that Firms have made over the last 4 steps.
Firms monitor if they are at a loss or a profit. Then, they check if their profits
or losses are stable, growing or shrinking. Firms only fire when they are at a
loss, and only hire when they are profiting, subject to sub-decisions.

​ When firing, Firms use the following inputs:
-​ Employee Skill: Is derived from the skill_level variable that each Person

possesses.
-​ Employee Labor: As mentioned in the State Variables chapter, each Person

has a labor value which is skill_level / random(3,5). This represents an
additional production_capacity value to the value Firm already has.

-​ Employee Productivity: Is calculated as skill_level * labor / wage.
Represents a virtual “productivity” score of employees.

​ When hiring, Firms use the following inputs:
-​ Minimum Skill Levels: Is a list of minimum skill levels required for each

job_level of each firm_area. (e.g. "technical": "senior": 80, "mid": 60,
"entry": 40)

-​ Skill Mix: Is a list of what percentage of each job_level there should be in
a Firm, for each firm_type.

-​ Skill: Is derived from the skill_level variable that each Person
possesses.

After making a hiring or firing decision, Firms update the value of num_employees,
and in turn costs increase or decrease according to employee wages.

16

Household Agents

1.​ Consumption Decisions
Households select which Firm they will buy from and how much they will buy during
this adaptation.

​ When selecting Firms, Households use the following inputs:

-​ Necessity Target: Every Household must buy from Firms with firm_type =
“necessity”. How much they will buy is determined via the
total_necessity_target variable. It is calculated by multiplying the
necessity_spend_per_person (whose value is 57750) and num_people
variables.

-​ Wealth Bracket: Represents which wealth bracket a Household belongs to
and is calculated on each step.

-​ If a Household belongs to the “Low” wealth bracket, they use the
product_price variable of Firms to find the lowest 25% priced firms and
select randomly from among them. Households in the “Low” wealth
bracket can only buy from Firms that have the firm_type =
“necessity”.

-​ If a Household belongs to the “Middle” or “High” wealth brackets, they
select a random Firm to buy from. These Households not only buy
necessities, but can also buy from Firms with firm_type = “luxury”.

After necessity spending is complete, “Middle” wealth Households
spend between 60%-100% of their remaining balance, while “High”
wealth Households spend between 80%-100% of their remaining
balance on luxury Firms which they randomly select, from 2 randomly
selected luxury firm_area’s.

After these consumption decisions, Households update their
necessity_fullfilment and household_step_expense variables.

17

Person Agent

1.​ Studying
​ Person’s grow their skills during this adaptation.

​ In order to make this decision, Persons use the following inputs:

-​ Skill Level: Represents a Person’s skill in a specific skill_type /
firm_area. Person’s calculate and monitor their own skill.

-​ Minimum Skill Levels: Is a list of minimum skill levels required for each
job_level of each firm_area.

​
If a Person’s skill level is below their own skill_type’s minimum skill level, they
decide to study to increase their skill up to that threshold, and update their
skill_level after this decision.

Government Agent
​ The Government Agent makes no adaptive decisions during a step.

Intermediary Firm Agent​
​ The Intermediary Firm Agent makes no adaptive decisions during a step.
​

Objectives
Agents in this model do not generally employ direct objective-seeking by maximizing a
specific, mathematically defined objective function (like utility or long-term profit). Instead,
their adaptive behaviors (see Adaptation) directly affect these objectives.

The Government Agent aims to maximise government reserves, maximise social welfare,
and reduce the Gini coefficient.
Firm Agents aim to maximise profits, minimise excessive inventory or stockouts, achieve
long-term growth, and balance employee costs and productivity. They do this by adjusting
prices, adjusting production, hiring/firing employees, and keeping track of employee
productivity.

Household Agents aim to maximise welfare. As each Household is composed of Person
Agents, Person decisions and outcomes directly affect Household objectives. While
Households decide on how much to spend and what to spend it on, Persons get employed,
earn money, and improve their skills. Persons aim to be employed and earn income. Welfare
is calculated as:
self.household_step_income_posttax*0.3 + self.household_step_expense*0.2
+ self.total_household_savings*0.2 + self.health_level*0.3

​
Learning
Learning is not implemented in this model.

18

Prediction
While prediction is not explicitly implemented as defined in the ODD Protocol, Firms taking
previous short term and long term demand is meant to simulate future demand prediction.
Firms also decide to hire/fire employees based on their profit history. Consistent profit or loss
trends lead to hiring and firing decisions, as Firms internally assume that these trends will
continue or that they need intervention.

The reason for the lack of explicit prediction with a technique such as regression is that such
a function would expand the complexity of this model beyond its scope.

Sensing
While the ODD protocol states that the Sensing chapter should discuss how agents can
sense state variables, this version will also discuss which non-state variables are sensed by
other agents.

All agents are aware of their own variables, as a result, only variables that they can sense
from other entities will be discussed.

Government Agent
​ Sensed variables from Firms: product_price, price_two_steps_ago,
firm_type, tax_paid_this_step, firm_area, produced_units
​ How can they sense these variables: The Government is assumed to have perfect
knowledge over the entire Firm industry as Firms “share” these values with the Government
for legal documentation.
​
​ Sensed variables from Households & Persons: income_bracket,
household_step_income, employer, job_seeking, num_people,
necessity_spend_per_person, total_household_savings
​ How can they sense these variables: The Government is assumed to have a
statistics institution (e.g. TURKSTAT) that collects this knowledge from Households and
Persons.

Firm Agents

Sensed variables from Persons: employer, skill_level, skill_type,
job_seeking, job_level, produced_units, labor, wage
​ How can they sense these variables: Firms are assumed to know Person
information from portals similar to career websites. They are also assumed to know the
variables of their own employees as they need them to calculate expenses.

Sensed variables from Households: demand
​ How can they sense these variables: Firms are able to sense demand from
Households as they send demand during their own step.

Sensed variables from Government: demand, corporate_tax_rate

19

​ How can they sense these variables: Firms are able to sense demand from the
Government as they send demand during their own step. Firms also sense the corporate tax
rate the Government sets as they need to pay taxes.

Household Agents
​ Sensed variables from Persons: all variables
​ How can they sense these variables: Households know Person variables as
Households are collectives composed of Persons.

Sensed variables from Firms: firm_type, product_price, inventory
How can they sense these variables: Households know Firm variables as they are

assumed to see the type of item they’re getting, the price of it, and if they can find it on the
shelves of the supermarket (inventory).

Sensed variables from Government: tax_rates
How can they sense these variables: Households know their income tax rate as

they need to pay taxes to the Government based on those rates.

Person Agents
​ Sensed variables from Households: unique_id (Households’ internal ID number
that Mesa attaches automatically)
​ How can they sense these variables: Persons naturally know which Household
they belong to.

Sensed variables from Firms: min_skill_level, wage, job_level
​ How can they sense these variables: Persons are assumed to know the minimum
skill level due to virtually searching through jobs from job portals that post job listings. They
also know their wages due to the need to get paid and contribute to the Household.

Intermediary Firm Agent

Sensed variables from Firms: production_cost
​ How can they sense these variables: Intermediary Firms are able to sense
demand from Firms as they send their costs as demand during their own step.

20

Interaction
There are 2 kinds of interactions in this model: direct and mediated.

The direct interactions in this model are as follows:

1.​ Household ↔ Firm
-​ Households sense firm data to make purchasing decisions. Specifically, the

Household identifies potential firms based on their firm_area, queries their
product_price, and checks their inventory status.

-​ Households send a purchase request to Firms with the
fulfill_demand_request function. This function on the Firm Agent takes
the number of units the household wishes to buy as an argument.

-​ Firms directly sell products to Households. If the Firm has sufficient
inventory, it reduces its inventory and increases its internal
units_sold_this_step counter, completing the transaction.

2.​ Person → Household
-​ Persons’ wage directly contributes to the total_household_income of the

Household they belong to.
3.​ Firm ↔ Person

-​ Firms hire persons by finding a suitable candidate and directly modifying their
state variables: employer is set to the firm object, job_seeking is set to
False, and wage and job_level are assigned.

-​ Firms fire persons by removing them from their employees list and setting
the person's employer attribute back to None, their wage to 0, and
job_seeking to True.

-​ Employed Persons directly provide labor for Firms.
4.​ Government ↔ Household

-​ The Government directly taxes Households.
-​ The Government provides direct financial support to households. It identifies

Households in need (i.e. that can’t meet their necessity spending target) and
directly increases their total_household_savings via a transfer payment.
This in turn affects Household welfare.

-​ Tax payments made by Households affect reserves, therefore affecting
general fiscal policy.

5.​ Government ↔ Firm
-​ The Government collects corporate taxes from Firms which affect reserves.

Firms calculate their own tax paid which reduces their profit.
-​ The Government makes direct purchases from necessity Firms, impacting

their sales and inventory.
6.​ Government → Person

-​ The Government identifies all unemployed and job seeking (i.e. the definition
of unemployment in macroeconomics), and provides unemployment benefits
by directly setting such Persons’ wage attribute to the unemployment
payment amount.

7.​ Intermediary Firm → Person

21

-​ The Intermediary Firm initializes by hiring Persons, and setting their wage
attribute to their revenue / num_employees. They also set their employer
to the firm object, job_seeking to False, and job_level to Entry.

8.​ Firm → Intermediary Firm
-​ Firms calculate their production_costs, and send this value as a demand

signal to the Intermediary Firm.
-​ The Intermediary Firm converts demand into revenue and distributes it as

wage. This way, circular cash flow between Firms, Households, Government
and the Intermediary Firm is achieved.

The mediated interactions in this model are as follows:

1.​ Household ↔ Firm:
-​ The supply-demand interaction between the two agents influence Firms’

adaptive behaviors (i.e. pricing, production, hiring) and therefore affect the
market for all Households and Firms.

2.​ Person → Government:
-​ Employment status of Persons affect the unemployment_rate variable,

which the Government senses.
3.​ Firm → Government:

-​ Total production and pricing structure of Firms affects the GDP and
inflation_rate variables, which the Government senses.

4.​ Firm ↔ Firm:
-​ Firms compete for Household and Government demand, which is a shared

resource. One Firm's pricing, production, and inventory levels indirectly affect
the sales opportunities and profitability of all other firms in the same market
segment.

-​ Firms also indirectly compete for Persons in the labor market, although this
primarily occurs because of the pool of job seekers and Firms’ hiring criteria.

5.​ Household ↔ Household:
-​ Households contribute to aggregate demand which creates competition

among each other due to goods being limited.
-​ They also interact with each other as each working Household member

directly contributes to Firm performance, which affects pricing and production.
6.​ Government ↔ Household:

-​ The Government and Households compete for Firm products, which are a
shared resource.

7.​ Person ↔ Person:
-​ Persons indirectly compete for available employment opportunities. One

Person’s successful hiring means that particular job opening is now closed for
another Person.

8.​ Firms ↔ Intermediary Firm Persons:
-​ The demand sent by the Firm to the Intermediary Firm determines their

employee’s wages. This means the production levels of Firms indirectly
determine the income levels of Persons in the Intermediary Firm.

None of the interactions in this model are spatial.

22

Stochasticity
Stochasticity is used in several aspects of the model, primarily during initialization and in
some agent decision processes.This method was utilised to further realise if patterns used to
evaluate the model (see Patterns) evolved naturally, as it ensures heterogeneity across the
agents, which is crucial for observing emergent dynamics and avoiding artificial uniformity.
The other reason stochasticity is utilized is that modeling certain systems would add great
complexity to the project, such as modeling production capacity of a Firm depending on its
factory size. The stochastic nature of the initialization aims to create a complex economic
landscape from which interactions and adaptations can unfold.

During initialization:

Household Agents

-​ num_people: The number of people variable is drawn from a random selection
between 1 to 5 people, meaning each Household randomly starts the simulation run
with 1 to 5 people assigned to them. The reason behind this choice is to have
heterogeneity between Household populations without modeling the causes of
variability (e.g. birth, death).

Firm Agents

-​ production_capacity: The amount of units a Firm can produce in one step is
determined via a random selection between a given range. This is done to create
different production powers between Firms and monitor their adaptation to their
attributes.

-​ production_cost: The cost of producing one unit is determined via a random
selection between a given range. The reason behind this is to simulate different costs
Firms might incur during production.

-​ entry_wage: The wage of an entry level employee, which is also a base for the
entire wage structure, is determined via a random selection between a given range.
This is done to model how Firms with different levels of capital pay their employees.

-​ initial_employee_target: This variable represents the amount of employees a
Firm starts the simulation off with. This is done to simulate different employment
structures of Firms.

-​ Initial Workforce Population: While running the _populate_initial_workforce
function which adds Persons to a Firm at initialization, Firms shuffle possible
candidates to introduce randomness in who gets hired if multiple candidates are
available for hire.

Person Agents

-​ skill_type: The skill area a Person has is determined randomly between 6 values:
physical, service, technical, creative, social, analytical. The reason behind this is to
create employees with different professions.

23

https://docs.google.com/document/d/1tNS8nKMgNKUbZcaj8hE1rsPXf86Pp-eOfcmpe-PRHkw/edit?pli=1&tab=t.0#heading=h.fc6coqmcxyqz

-​ skill_level: The skill level a Person has is determined via a random normal
distribution between 0-100, with a mean of 50 and a standard deviation of 15. This is
to simulate different natural aptitudes between people.

Intermediary Firm Agent

-​ Initial Workforce Population: Similar to Firms, the Intermediary Firm shuffles
possible candidates to introduce randomness in who gets hired if multiple candidates
are available for hire while running the _populate_initial_workforce function.

After initialization, during agent decisions:

Household Agents

-​ Finding Cheapest Firm: When “Low” wealth Households are selecting a necessity
Firm to purchase from, they find the cheapest 25% of Firms, and select one
randomly.

-​ Selecting a Firm: When “Middle” or “High” wealth Households are selecting a
necessity or luxury Firm to purchase from, they select a random Firm from the list of
Firms.

-​ Selecting a Luxury Type: When “Middle” or “High” wealth Households are selecting
a luxury Firm to purchase from, they must select two of four luxury types. This
selection is done randomly.

-​ Luxury Spend Percentage: When doing their luxury spend, “Middle” wealth
Households spend 60 to 100% of their remaining funds, and “High” wealth
Households spend 80 to 100% of their remaining funds. The exact percentage to be
spent varies and is selected randomly between these ranges.

Firm Agents

-​ person_to_hire: When hiring if there are multiple equally suitable top candidates,
one is chosen randomly from the top half of candidates sorted by skill level. This
simulates the “personal” aspect of hiring, where factors other than skill are
considered to determine the right candidate.

Government Agent

-​ Selecting a Firm: When purchasing necessity goods, potential Firms are shuffled
randomly before the Government iterates through them to make purchases.

24

Collectives
The model includes 2 collectives: the Households and the employees.
Each Household is an aggregation of one or more Persons, and are explicitly represented.
Employees are the list of Persons working for a Firm, but are not explicitly represented and
do not have their own behaviors and state variables.

The Household entity has its own state variables (see State Variables) and behaviors. This
collective is included in the model as real-world households are also composed of multiple
members contributing to the household differently while making collective decisions for the
benefit of the entire household. The Household's state is affected by the states of its Persons
(their wages). Conversely, the household's overall financial status and decisions affect its
members (e.g., contributing to the welfare and health_level which are calculated at the
household level).

Simulating income and creating a labor market is made much easier by utilising individuality
of Person agents rather than creating stochastic values for Household “blocks”.

Observation
The model produces various outputs that capture the conditions emerging from agent
interactions. Data for analysis is systematically collected at the end of each simulation step
using the Mesa DataCollector. All observations are collected at the agent level, although the
code implementation of Government data collection is made model-wide due to the way the
Mesa framework operates. Outputs include both measures of central tendency and
variability. This captures not just the average conditions but also the heterogeneity and
inequalities across agents.

Variables collected from the Government agent are as follows:

-​ reserves: Tracked to monitor the Government's fiscal health and capacity for
spending over time.

-​ step_public_spending: Observed to measure the Government's spending in
each step.

-​ unemployment_rate: A key macroeconomic indicator, calculated to assess the
health of the labor market.

-​ gdp: Measured as the total value of firm production, this variable tracks the overall
economic output of the simulation.

-​ step_tax_revenue: Total tax collected in a step from Households, tracked to
analyze government income and the tax burden on the economy related to
Households.

-​ step_corporate_tax_revenue: Total tax collected in a step from Firms, tracked
to analyze government income and the tax burden on the economy related to Firms.

-​ inflation_rate: A critical macroeconomic indicator, calculated from firm price
changes to monitor price stability.

-​ gini_coefficient: Recorded to measure income inequality across all Persons, a
key metric for social welfare analysis.

25

Variables collected from the Firm agent are as follows:
-​ firm_type and firm_area: Observed to analyze differentiated market behavior,

profitability, and resilience between necessity/luxury firms and across different
business sectors.

-​ profit and revenue: Tracked to evaluate Firm performance over time.
-​ inventory: Tracked to observe Firm inventory levels over time.
-​ produced_units: Recorded to track production over time.
-​ product_price and markup: Recorded to assess pricing dynamics, Firm strategy,

and their contribution to inflation.
-​ num_employees and revenue_per_employee: Observed to understand labor

market dynamics.
-​ production_level: Recorded to understand whether Firms adapt to demand as

designed.
-​ production_capacity: Observed to assess whether production capacity has a

correlation with revenue.
-​ demand_for_tracking: Tracked to measure consumer demand over time.
-​ costs and capital: Recorded to see a complete picture of a Firm's financial state,

including its operational costs and accumulated wealth.

Variables collected from the Household agent are as follows:

-​ income_bracket and wealth_bracket: Recorded to observe the distribution of
Households across different economic statuses and to analyze social inequality.

-​ household_step_income and household_step_income_posttax: Tracked to
observe the financial inflow and disposable income of Households, which drives
consumption.

-​ household_step_expense: Observed to analyze consumption patterns.
-​ total_household_savings: Observed to analyze savings behavior and cash

balance of Households.
-​ health_level and welfare: Recorded as key measures of Household well-being,

which is a primary outcome for assessing the model's socio-economic state.
-​ debt_level: Observed to monitor Household financial distress
-​ num_people, num_working_people, num_seeking_job and

num_not_seeking_job: Tracked to understand Household composition and its
labor force participation, which influences income and welfare.

Variables collected from the Person agent are as follows:

-​ skill_level: Tracked to observe skill distribution in the population and changes in
skill level over time.

-​ skill_type: Recorded to understand how different skill sets fare in the market.
-​ employer: Observed to calculate unemployment rates. If an employer exists,

Person is regarded as employed.
-​ job_seeking: Recorded to provide the raw data for calculating unemployment

rates. If a Person is unemployed but not job_seeking, they are disregarded in the
unemployment calculations.

26

-​ wage: Observed to track individual earnings, and to provide the basis for calculating
income inequality and Household income.

-​ job_level: Recorded to track career progression, understand employment
structure and how that affects Household welfare.

No "virtual scientist" or other specialized observation techniques are used to simulate
empirical data collection biases. The observation process consists of recording the true state
of agent and model variables at each step.

27

2.3.​ DETAILS
2.3.1.​ INITIALIZATION

The model is initialized with:

-​ 1 GovernmentAgent,
-​ 75 FirmAgent’s (unevenly split into different firm_area’s),
-​ 1 IntermediaryFirmAgent
-​ 1,000 HouseholdAgent’s
-​ 30,000 PersonAgent’s, who are assigned to Households and cleaned up later on.

During initialization, a creation sequence is run at the start of the simulation and proceeds as
follows:

1.​ Creation of Persons
​ 30,000 PersonAgent’s are created and placed in a temporary global list called
available_persons.

2.​ Creation of Government and Firms
-​ The GovernmentAgent is created, followed by FirmAgent’s and the

IntermediaryFirmAgent.

3.​ Initial Hiring
-​ During the creation of FirmAgent’s and the IntermediaryFirmAgent, both

agents run their internal _populate_initial_workforce function that hires their
starting employees, from the available_persons list.

4.​ Creation of Households
1000 HouseholdAgent’s are created, each with a randomly assigned target
population size.

5.​ Household Assignment

The _assign_persons_to_households function is called in the model. This
procedure assigns Persons to Households in this sequence:

-​ Model lists employed, unemployed Persons and all Households.
-​ Shuffles all three lists randomly.
-​ Iterates through each Household and places 1 employed Person into each

Household until there are no employed Persons left to place
-​ Once all employed Persons are placed, remaining slots in Households (that

were determined by their num_people attribute) are filled up with
unemployed Persons.

6.​ Cleanup

Any PersonAgent’s remaining in the available_persons list after the
assignment process are deleted from the simulation as the initial targets have been
reached.

28

Most initial state variables of entities are determined stochastically (see Stochasticity). Apart
from the values described in the Stochasticity section, the initial values given for each
entity’s state variables are as follows:

Government Agent

-​ The Government reserves are initialized to 100,000,000

Firm Agents

-​ firm_area distribution:
-​ 25 Necessity - Physical Firms
-​ 25 Necessity - Service Firms
-​ 10 Luxury - Technical Firms
-​ 5 Luxury - Creative Firms
-​ 5 Luxury - Social Firms
-​ 5 Luxury - Analytical Firms

-​ Firm capital is initialized with 1,000,000 currency units for all Firms.
-​ Firm inventory is initialized with production_capacity * 2.
-​ Firm markup initialization for each firm_area:

-​ Physical: 2
-​ Service: 3
-​ Technical: 7
-​ Creative: 6
-​ Social: 5
-​ Analytical: 6

-​ Firm production_level is initialized as 1.

Intermediary Firm Agent

-​ This firm is initialized with an initial_employee_target of 240 employees.

Household Agents

-​ Each Household is initialized with an income_tax_rate of whichever rate the
Government assigned them in accordance with their income_bracket.

Person Agents

-​ Each Person has their employer and household initialized by the creation
sequence described earlier.

-​ Each Person is initialized with a job_seeking status of True.
-​ Each Person is initialized with a work_hours value of 40.

With this model, the goal of the experiments are both to understand the effects of the initial
conditions and the effects of processes happening after initialization. This creates a conflict
of interest within the model design. On one hand, how the model is initialized affects the
results greatly. On the other hand, where the results converge in later steps of the simulation
is extremely important. The hardest part about this model is the initial value calibration.
Between runs, changing the initial values and the ranges in which the random selection

29

happens is very difficult to calibrate and would require (a) large amounts of time, (b) large
amounts of computational power, and (c) machine learning capabilities to automate and find
the best calibration result. Unfortunately, due to the scope and time limit of this project, this
was not possible. Initial values and the ranges of stochastic selection are not perfect, and
this imperfection has affected the numerical results discussed in the Results chapter greatly.
While the system of this model is comprehensive and logical, the results are skewed by poor
initialization.

The rationale behind the stochastic nature of the initialization is further discussed in the
Stochasticity section.

The hiring of an initial workforce by Firms is done so the economy doesn’t start with
universal unemployment.
Each Household having at least one employed Person ensures every Household is part of
the economy, and is capable of earning and consuming money.
Firms start with capital, Households with some savings, and the Government with
reserves, providing initial liquidity.
Firms calculate an initial price based on estimated initial costs and markup, rather than an
arbitrary value.

The reasoning behind the number of created agents does not depend on real-world data but
rather the real-world experience of the project author.

As previously discussed, the model does not include an explicit spatial environment.
Therefore, no initialization of agent locations or spatial variables occurs.

2.3.2.​ INPUT DATA
The model primarily uses internally generated parameters and stochasticity for its dynamics
rather than relying on external time-series input data to drive changes during a simulation
run.

All financial data inside the model, including relevant Government variables, are in Turkish
Lira (TRY/₺) format.

While not set in source-backed real-world data, prices and wages inside of the model are
also generated from the real-world experience of the project author, and are meant to
simulate the Turkish economy.

30

2.3.3.​ SUBMODELS
This section provides detailed descriptions of the function that constitute the core logic and
behaviors of the agents in the Economixim simulation.

Firm Agents Submodels

1.​ Initial Workforce Population (_populate_initial_workforce)​

Purpose: To hire the initial set of employees for the firm when it is first
created. This submodel ensures that firms start with a workforce appropriate to their
area and target size.

Inputs:

-​ target_count: Desired number of initial employees for the firm.
-​ self.model.available_persons: Global list of all PersonAgents

available for hire.
-​ self.firm_area: The business area of the firm.
-​ self.skill_mix_config: Configuration defining the target

proportion of senior, mid, and entry-level employees for the firm's
area.

-​ self.skill_type_matching_config: Configuration matching firm
area to required PersonAgent skill_type.

-​ self.min_skill_levels_config: Configuration defining minimum
skill_level for each job level in the firm's area.

-​ self.entry_wage: The base wage for entry-level positions at the
firm.

-​ self.wage_multipliers: Multipliers applied to the entry_wage
for mid and senior levels.

Process:

1.​ Iterate through job levels (senior, mid, entry) based on
skill_mix_config

2.​ For each job level, calculate the number of employees to hire
3.​ Filter self.model.available_persons to find candidates who are

job_seeking, have no employer, match the target_skill_type
for the firm's area, and meet the min_skill_for_job_level

4.​ Randomly shuffle the list of possible hires
5.​ Hire candidates sequentially until the target for that job level is met or

the overall target_count for the firm is reached

Outputs/State Variables Updated:

-​ self.employees: List of PersonAgents employed by the firm is
populated.

-​ self.num_employees: Updated with the count of hired employees.

31

-​ For each hired PersonAgent:
-​ employer is set to this firm.
-​ job_seeking is set to False.
-​ job_level is assigned.
-​ wage is calculated based on entry_wage and

wage_multipliers.

2.​ Demand Fulfillment (fulfill_demand_request)

Purpose: To process purchase requests from HouseholdAgents or the
GovernmentAgent.

Inputs:

-​ units_requested: The number of units the customer wishes to buy.
-​ self.inventory: The firm's current stock of goods.

Process:

1.​ Determine the number of units that can be fulfilled (can_fulfill) by
taking the minimum of units_requested and self.inventory

2.​ If can_fulfill > 0:
○​ Decrement self.inventory by can_fulfill
○​ Increment self.units_sold_this_step by can_fulfill

3.​ Increment self.total_requested_this_step by
units_requested (regardless of fulfillment)

Outputs/State Variables Updated:
-​ self.inventory
-​ self.units_sold_this_step
-​ self.total_requested_this_step

Returns: Number of units actually sold/fulfilled.

3.​ Production Adjustment (adjust_production)

Purpose: To adapt the firm's production level based on market conditions
(demand, inventory) and firm type.

Inputs:

-​ sold_units: Number of units sold in the current step.
-​ self.labor_added_production_capacity: Current total

production capacity.
-​ self.inventory: Current inventory level.

32

-​ self.average_demand: Calculated average demand.
-​ self.produced_units: Units produced in the current step.
-​ self.firm_type: "necessity" or "luxury".
-​ self.production_capacity: Base production capacity.

Process:

1.​ Handle zero capacity case
2.​ Calculate demand_to_inventory_ratio and

sell_through_rate
3.​ Set min_production_level based on firm_type (0.3 for luxury,

0.2 for necessity)
4.​ If no demand history or average demand is zero, set production level

based on a simpler inventory threshold
5.​ Otherwise, adjust self.production_level incrementally based on

demand_to_inventory_ratio and sell_through_rate. High
demand or good sell-through increases production; poor sales with
high inventory decrease it

6.​ Special handling for luxury firms in crisis (low demand and low
production level) to maintain a minimum viable production

7.​ Ensure self.production_level stays within
min_production_level and 1.0

Outputs/State Variables Updated:

-​ self.production_level

4.​ Price Adjustment (adjust_price)

Purpose: To adapt the product's selling price based on market conditions,
costs, and demand trends.

Inputs:

-​ sold_units: Units sold this step.
-​ produced_units: Units produced this step.
-​ cost_per_unit: Current cost to produce one unit.
-​ self.inventory: Current inventory.
-​ self.total_requested_this_step: Total demand this step.
-​ self.demand_history: History of demand.
-​ self.firm_type: "necessity" or "luxury".
-​ self.average_demand: Calculated average demand.
-​ self.production_capacity: Base production capacity.
-​ self.min_price: Minimum allowable price (based on initial costs).
-​ self.production_cost: Base material cost per unit.

33

Process:

1.​ Handle zero production case
2.​ Calculate inventory_demand_ratio and sell_through_rate
3.​ Calculate short_term_trend and long_term_trend from

demand_history
4.​ Determine market_pressure based on a combination of

inventory_demand_ratio, sell_through_rate, and demand
trends. Luxury firms have more aggressive responses to oversupply

5.​ Include a crisis intervention for luxury firms (aggressive price cutting if
very low demand and sell-through)

6.​ Calculate markup_change based on market_pressure (luxury
firms in crisis have more aggressive markup reduction)

7.​ Update self.markup, ensuring it's at least 0.5
8.​ Calculate new self.product_price as cost_per_unit * (1 +

self.markup)
9.​ Ensure self.product_price is not below a

flexible_min_price (which is very close to material cost for luxury
firms in crisis, otherwise it's the initial min_price)

Outputs/State Variables Updated:

-​ self.markup
-​ self.product_price

5.​ Employee Adjustment (adjust_employees)

Purpose: To adapt the firm's workforce size based on recent profitability.

Inputs:

-​ self.profit_history: List of profits from the last few steps.
-​ self.employee_adjustment_cooldown: Cooldown timer.

Process:

1.​ Check employee_adjustment_cooldown. If > 0, decrement and
return

2.​ Require at least profit_history_length (4 steps) of profit data
3.​ Calculate avg_past_3_steps_profit (average of profits from t-1,

t-2, t-3)
4.​ Determine if current profit (p0) is stable relative to

avg_past_3_steps_profit
5.​ Decision logic:

34

a.​ If at a loss (p0 < 0):
i.​ If losses are worsening or stable compared to

avg_past_3_steps_profit, call
fire_least_productive

ii.​ If losses are improving, monitor
b.​ If profitable (p0 >= 0):

i.​ If profits are increasing or stable compared to
avg_past_3_steps_profit, call
hire_new_employee

ii.​ If profits are falling, currently monitor (no firing action
implemented for this case)

6.​ If an adjustment (hire/fire) was made, set
employee_adjustment_cooldown to 1 (effectively a 2-step
cooldown)

Outputs/State Variables Updated:

-​ self.employee_adjustment_cooldown
-​ (Indirectly, via called functions) self.employees,

self.num_employees, and PersonAgent states.

6.​ Fire Employee (fire_least_productive)

Purpose: To remove the least productive employee from the firm.

Inputs:

-​ self.employees: Current list of employees.
-​ self.num_employees: Current number of employees.

Process:

1.​ Return False if no employees or only one employee
2.​ Calculate productivity for each employee as (skill_level *

labor) / (wage + 1e-6)
3.​ Sort employees by productivity (lowest first)
4.​ Select the employee with the lowest productivity (person_to_fire)
5.​ Update person_to_fire's state: employer = None, wage = 0,

job_seeking = True
6.​ Remove person_to_fire from self.employees and decrement

self.num_employees

Outputs/State Variables Updated:

-​ self.employees

35

-​ self.num_employees
-​ State of the fired PersonAgent (employer, wage, job_seeking).

Returns: True if an employee was fired, False otherwise.

7.​ Hire Employee (hire_new_employee)

Purpose: To recruit a new employee based on skill needs and availability.

Inputs:

-​ self.employees: Current list of employees.
-​ self.num_employees: Current number of employees.
-​ self.firm_area: The firm's business area.
-​ self.min_skill_levels_config, self.skill_mix_config,

self.skill_type_matching_config.
-​ self.entry_wage, self.wage_multipliers.
-​ self.model.available_persons (implicitly, by iterating

self.model.agents to find job seekers).
-​ self.previous_employees: A set to track recently hired individuals

to avoid immediate rehire.

Process:

1.​ Calculate the current mix of job levels (entry, mid, senior) in the firm
2.​ Determine the target job level most needed to achieve the

skill_mix_config
3.​ Identify min_skill_level and matching_skill_type for the

target job level
4.​ Find available_job_seekers from all agents in the model
5.​ Filter candidates based on min_skill_level,

matching_skill_type, and not being in previous_employees. If
no exact matches, relax the skill requirement slightly

6.​ If suitable candidates exist, sort them by skill_level (descending)
and randomly choose one from the top half

7.​ Calculate offered_wage based on entry_wage,
wage_multipliers for the job level, and a skill bonus

8.​ Update the hired person's state: employer = self, wage =
offered_wage, job_seeking = False, job_level

9.​ Add the person to self.employees, increment
self.num_employees, and add to self.previous_employees

Outputs/State Variables Updated:

36

-​ self.employees
-​ self.num_employees
-​ self.previous_employees
-​ State of the hired PersonAgent (employer, wage, job_seeking,

job_level).

Returns: True if an employee was hired, False otherwise.

8.​ Production Operations (Part of step method)

Purpose: To produce goods based on the firm's production decisions and
capacity.

Inputs:

-​ self.production_capacity: Base capacity.
-​ self._calculate_total_labor(): Calculated added capacity

from employees.
-​ self.production_level: Current utilization percentage of total

capacity.
-​ self.production_cost: Material cost per unit.
-​ self.calculate_total_wage_cost(): Total wage expenses.

Process:

1.​ Calculate labor_added_production_capacity by adding
_calculate_total_labor() to production_capacity

2.​ Calculate produced_units by multiplying
labor_added_production_capacity by production_level and
rounding

3.​ Increase self.inventory by produced_units
4.​ Calculate total costs as the sum of wage_costs and

production_costs (material costs for produced_units)
5.​ Send production_costs to the IntermediaryFirmAgent via its

receive_firm_demand method

Outputs/State Variables Updated:

-​ self.labor_added_production_capacity
-​ self.produced_units
-​ self.inventory
-​ self.costs
-​ (Indirectly)

IntermediaryFirmAgent.demand_received_from_firms

37

9.​ Financial Calculations (Part of step method)

Purpose: To calculate revenue, profit, and update capital.

Inputs:

-​ self.product_price: Current selling price.
-​ sold_units (derived from self.units_sold_this_step which is

reset after this calculation).
-​ self.costs: Total costs calculated in production.
-​ self.model.government_agent.government_purchases_from

_firms_step: Dictionary of purchases made by Government.
-​ self.model.government_agent.corporate_tax_rate:

Corporate tax rate.

Process:

1.​ Calculate self.revenue as self.product_price * sold_units.
2.​ Calculate pre_tax_profit as self.revenue - self.costs
3.​ Determine tax_paid_this_step: If pre_tax_profit is positive,

subtract revenue from direct government purchases
(amount_from_gov) to find the true_taxable_profit. If this is
positive, calculate tax as true_taxable_profit *
corporate_tax_rate

4.​ Calculate final self.profit as pre_tax_profit -
tax_paid_this_step

5.​ Update self.capital by adding self.profit
6.​ Calculate self.revenue_per_employee

Outputs/State Variables Updated:

-​ self.revenue
-​ self.tax_paid_this_step
-​ self.profit
-​ self.capital
-​ self.revenue_per_employee

​

10.​Update Historical Metrics and Reset Counters (Part of step method)

Purpose: To maintain historical data for adaptive decision-making and reset
step-specific counters.

Inputs:

38

-​ self.total_requested_this_step
-​ self.profit
-​ self.revenue_per_employee

Process:

1.​ Set self.last_step_revenue_per_emp to current
self.revenue_per_employee (if first step, initialize it)

2.​ Append self.total_requested_this_step to
self.demand_history, maintaining demand_history_length

3.​ Calculate self.average_demand using demand_history and
demand_averaging_weights

4.​ Append self.profit to self.profit_history, maintaining
profit_history_length

5.​ Reset self.units_sold_this_step and
self.total_requested_this_step to 0 for the next step

6.​ Store self.total_requested_this_step in
self.demand_for_tracking for data collection

Outputs/State Variables Updated:

-​ self.last_step_revenue_per_emp
-​ self.demand_history
-​ self.average_demand
-​ self.profit_history
-​ self.units_sold_this_step (reset)
-​ self.total_requested_this_step (reset)
-​ self.demand_for_tracking

Household Agent Submodels

1.​ Update Employment Counts (_update_employment_counts)

Purpose: To update the household's internal counts of working, job-seeking,
and non-seeking members.

Inputs:

-​ self.members: List of PersonAgents in the household.

Process:

1.​ Reset self.num_working_people,
self.num_not_seeking_job, self.num_seeking_job to 0

39

2.​ Iterate through self.members:
a.​ If a member has an employer, increment

self.num_working_people
b.​ Else if a member is not job_seeking, increment

self.num_not_seeking_job
c.​ Else (unemployed and job-seeking), increment

self.num_seeking_job

Outputs/State Variables Updated:

-​ self.num_working_people
-​ self.num_not_seeking_job
-​ self.num_seeking_job

2.​ Find Cheapest Firm (_get_cheapest_firm)

Purpose: To find a firm in a given category that offers a low price, simulating
a price-sensitive consumer.

Inputs:

-​ firm_category: The business area of firms to consider (e.g.,
"physical", "service").

-​ candidate_firms (optional): A pre-filtered list of firms. If None,
searches all firms in the model.

Process:

1.​ Filter firms to consider: must match firm_category, have
product_price > 0, and inventory > 0

2.​ If no suitable firms, returns None
3.​ Sort considered firms by product_price (cheapest first)
4.​ Select the top 25% cheapest firms (at least 1)
5.​ Randomly choose one firm from this cheapest tier

Returns: A FirmAgent object or None.

3.​ Purchase Goods (_calculate_cost_and_buy)

Purpose: To simulate the household purchasing goods from firms in a
specific category, trying to meet a spending target.

Inputs:

40

-​ firm_category: The category of goods to purchase.
-​ target_spend: The desired amount to spend.
-​ self.wealth_bracket: The household's current wealth status

("low", "middle", "high").

Process:

1.​ Initialize total_spent_for_category = 0.0 and
remaining_spend_target = target_spend

2.​ Get a list of potential_purchase_candidates (firms of
firm_category with positive price and inventory), and shuffle it

3.​ Loop while remaining_spend_target is meaningful and
potential_purchase_candidates exist:

a.​ Filter potential_purchase_candidates for firms that still
have inventory (currently_available_firms)

b.​ If self.wealth_bracket is "middle" or "high", randomly
choose a firm from currently_available_firms

c.​ Else (low wealth), call _get_cheapest_firm on
currently_available_firms

d.​ If a chosen_firm is found:
i.​ Calculate desired_units based on

remaining_spend_target and
chosen_firm.product_price

ii.​ If desired_units > 0, call
chosen_firm.fulfill_demand_request(desired
_units)

iii.​ If units are bought, update
total_spent_for_category and
remaining_spend_target

e.​ Remove the chosen_firm from
potential_purchase_candidates for this purchasing
round

Returns: The actual total_spent_for_category.

4.​ Spend on Luxuries (_spend_on_luxuries)

Purpose: To simulate household spending on luxury goods if budget allows
after necessities.

Inputs:

-​ remaining_budget: Funds available after necessity spending.

41

-​ percentage_range: A tuple (min_percent, max_percent) of the
remaining_budget to allocate to luxuries.

Process:

1.​ If remaining_budget <= 0, returns 0
2.​ Determine total_luxury_budget_to_spend by choosing a

random percentage from percentage_range and applying it to
remaining_budget

3.​ Randomly sample 2 luxury firm areas (e.g., "technical", "creative").
4.​ Divide total_luxury_budget_to_spend equally among the

chosen luxury types
5.​ For each chosen luxury type:

a.​ Identify potential firms of that type with positive price and
inventory, and shuffle them.

b.​ Iteratively attempt to purchase from these firms (random
choice from those still having inventory) until the budget for this
luxury type is exhausted or no more firms are available.
Purchase logic is similar to _calculate_cost_and_buy but
selection is always random from available firms

Returns: The total amount actually spent on luxury goods.

5.​ Household Step (step)

Purpose: To execute the household's complete economic cycle for one
simulation step. This is the main submodel for households.

Process:

1.​ Income Calculation: Sum wage from all employed self.members to
set self.household_step_income

2.​ Determine Income Bracket: Set self.income_bracket ("low",
"middle", "high") based on self.household_step_income relative
to total_necessity_target (calculated as
self.necessity_spend_per_person * self.num_people)

3.​ Calculate Post-Tax Income:
self.household_step_income_posttax =
self.household_step_income * (1 -
self.income_tax_rate) (Note: income_tax_rate is set by the
government based on the bracket)

4.​ Determine Wealth Bracket: Set self.wealth_bracket ("low",
"middle", "high") based on self.total_household_savings +

42

self.household_step_income_posttax relative to
total_necessity_target

5.​ Necessity Spending:
-​ Calculate available_funds (post-tax income + savings)
-​ Calculate attemptable_necessity_budget as

min(total_necessity_target, available_funds)
-​ Attempt to spend half of this on "physical" goods using

_calculate_cost_and_buy
-​ Attempt to spend the remainder on "service" goods using

_calculate_cost_and_buy
-​ Calculate total_necessity_spent

6.​ Luxury Spending:
-​ Calculate remaining_funds after necessity spending.
-​ If self.wealth_bracket is "middle" or "high" and

remaining_funds > 0, call _spend_on_luxuries with
appropriate percentage ranges (0.6-1.0 for middle, 0.8-1.0 for
high).

7.​ Update Financial Metrics:
-​ self.household_step_expense =

total_necessity_spent + luxury_spent.
-​ self.total_household_savings = available_funds -

self.household_step_expense.
-​ Update self.debt_level.

8.​ Update Health and Welfare:
-​ Calculate necessity_fulfillment percentage. If < 1.0,

increment
self.model.unmet_necessity_households_count.

-​ Set base_health based on self.wealth_bracket.
-​ self.health_level = base_health *

necessity_fulfillment.
-​ self.welfare is calculated as a weighted sum of

household_step_income_posttax,
household_step_expense, total_household_savings,
and health_level.

Outputs/State Variables Updated: All household financial, bracket, health,
and welfare variables. model.unmet_necessity_households_count is
also potentially updated.

43

Person Agent Submodels

1.​ Skill and Job Seeking Update (step)

Purpose: To manage a person's job-seeking status and skill development.

Inputs:

-​ self.job_seeking: Current job-seeking status.
-​ self.studying_for_min_skills: Flag indicating if studying.
-​ self.skill_level: Current skill level.
-​ self.skill_type: The person's skill area.
-​ self.skill_improvement_rate: Base rate of skill improvement.
-​ self.employer: Current employer (if any).
-​ (Implicitly) FirmAgent.min_skill_levels_config: Sensed from

any firm in the model to determine minimum entry skill for their type.

Process:

1.​ Determine min_entry_level for the person's skill_type by
checking the min_skill_levels_config of a Firm

2.​ If the Person is currently studying_for_min_skills OR if they are
job_seeking but their skill_level is below min_entry_level:

a.​ Set self.studying_for_min_skills = True.
b.​ Set self.job_seeking = False
c.​ Increase self.skill_level by an enhanced rate

(self.skill_improvement_rate * 1.5), capped at 100
d.​ If self.skill_level now meets or exceeds

min_entry_level, set self.studying_for_min_skills
= False and self.job_seeking = True

3.​ If the person has an employer, ensure self.job_seeking is
False and self.studying_for_min_skills is False

Outputs/State Variables Updated:

-​ self.job_seeking
-​ self.studying_for_min_skills
-​ self.skill_level

44

Government Agent Submodels

1.​ Inflation Calculation (_calculate_inflation_rate)

Purpose: To calculate the economy-wide inflation rate based on firm price
changes.

Inputs:

-​ self.model.current_step: Current simulation step.
-​ Price data (product_price, price_two_steps_ago) from all

FirmAgents.
-​ firm_type ("necessity" or "luxury") of FirmAgents.

Process:

1.​ Use a fixed inflation rate for an initial BURN_IN_PERIOD (5 steps)
2.​ After burn-in, collect price changes ((current_price -

price_two_steps_ago) / price_two_steps_ago) for all firms
with valid historical price data

3.​ Separate price changes for "necessity" and "luxury" firms
4.​ Calculate average price change for necessity goods and luxury goods
5.​ Calculate the overall self.inflation_rate as a weighted average

(80% necessity, 20% luxury). Handle cases where one or both
categories have no price changes

Outputs/State Variables Updated:

-​ self.inflation_rate

​

2.​ Tax Collection (_collect_taxes, _collect_corporate_taxes)
●​ _collect_taxes (Household Income Tax):

Purpose: To collect income tax from all HouseholdAgents.

Inputs:

-​ household_step_income and income_bracket from each
HouseholdAgent;

-​ self.tax_rates (dictionary of rates per bracket).

Process:

1.​ Iterate through Households

45

2.​ Determine the applicable tax_rate based on the Household's
income_bracket

3.​ Calculate tax_amount
4.​ Add tax_amount to self.step_tax_revenue
5.​ Update the household's income_tax_rate attribute

Outputs/State Variables Updated:

-​ self.step_tax_revenue. (Indirectly updates
HouseholdAgent.income_tax_rate).

●​ _collect_corporate_taxes:

Purpose: To aggregate corporate taxes paid by FirmAgents.

Inputs:

-​ tax_paid_this_step attribute from each FirmAgent.

Process:

1.​ Iterate through all FirmAgents
2.​ Sum Firm tax_paid_this_step (which firms calculated in their own

step based on profits and self.corporate_tax_rate)

Outputs/State Variables Updated:

-​ self.step_corporate_tax_revenue.

3.​ Welfare Distribution
(_calculate_and_distribute_unemployment_payments,
_calculate_and_distribute_low_income_transfers)

●​ _calculate_and_distribute_unemployment_payments:

Purpose: To provide unemployment benefits to eligible PersonAgents.

Inputs:

-​ Employment status (employer)
-​ job_seeking status of all PersonAgents.

Process:

46

1.​ Identify unemployed Persons (employer is None and
job_seeking is True)

2.​ Pay each unemployed Person a fixed payment_per_person
(10,000), which is set as their wage for the step

3.​ Accumulate total_unemployment_payments

Outputs/State Variables Updated:

-​ PersonAgent.wage for unemployed individuals.

Returns: total_unemployment_payments.

●​ _calculate_and_distribute_low_income_transfers:

Purpose: To provide financial assistance to low-income households.

Inputs:

-​ household_step_income_posttax
-​ total_household_savings
-​ necessity_spend_per_person
-​ num_people

from each HouseholdAgent.

Process:

1.​ For each household, calculate total_necessity_target
2.​ If available_funds (income + savings) is less than this target,

calculate the deficit and provide a transfer_amount (deficit +
5,000 buffer) directly to household.total_household_savings

3.​ Accumulate total_low_income_transfers

Outputs/State Variables Updated:

-​ HouseholdAgent.total_household_savings for eligible
households.

Returns: total_low_income_transfers.

47

4.​ Government Spending (_execute_government_necessity_spending)

Purpose: To simulate government purchasing necessity goods from firms.

Inputs:

-​ budget: The amount allocated for this spending.
-​ List of "necessity" FirmAgents, their product_price and

inventory.

Process:

1.​ Split the budget equally between "physical" and "service" necessity
categories.

2.​ For each category:
a.​ Identify potential firms (necessity type, matching area, positive

price and inventory). Shuffle these firms
b.​ Iteratively attempt to purchase from these firms:

i.​ Calculate desired_units based on remaining
category budget and firm price

ii.​ Call
chosen_firm.fulfill_demand_request(desired
_units)

iii.​ If units are bought, update
total_spent_on_necessities, reduce remaining
category budget, and record the purchase amount in
self.government_purchases_from_firms_step

Outputs/State Variables Updated:

-​ self.government_purchases_from_firms_step
-​ (Indirectly) FirmAgent.inventory and sales metrics.

Returns: total_spent_on_necessities

5.​ Economic Indicator Calculation (_calculate_unemployment_rate,
_calculate_gdp, calculate_gini_coefficient)

●​ _calculate_unemployment_rate:

Purpose: To calculate the overall unemployment rate.

Inputs:

-​ Employment status of all PersonAgents

48

-​ job_seeking status of all PersonAgents

Process:

1.​ Define labor force (employed + job-seeking unemployed)
2.​ Calculate unemployment_rate as (number of actively unemployed /

labor force size) * 100

Outputs/State Variables Updated:

-​ self.unemployment_rate

●​ _calculate_gdp:

Purpose: To calculate the Gross Domestic Product for the step.

Inputs:

-​ produced_units from all FirmAgents
-​ product_price from all FirmAgents

Process:

1.​ Sum the value of production (produced_units * product_price)
across all firms

Outputs/State Variables Updated:

-​ self.GDP

●​ calculate_gini_coefficient:

Purpose: To measure income inequality.

Inputs:

-​ wage of all PersonAgents.

Process:

1.​ Collect all Person wages (using max(0, wage))
2.​ Sort Person wages
3.​ Apply the standard Gini coefficient formula

Outputs/State Variables Updated:

49

-​ Self.gini_coefficient

6.​ Government Step (step)

Purpose: To execute the government's complete fiscal and monitoring cycle
for one simulation step. This is the main submodel for the government.

Process (Order of Operations):

1.​ Reset self.government_purchases_from_firms_step
2.​ Call _calculate_inflation_rate()
3.​ Calculate and distribute welfare:

a.​unemployment_payments_total =
_calculate_and_distribute_unemployment_payments
()

b.​low_income_transfers_total =
_calculate_and_distribute_low_income_transfers(
)

4.​ Set self.step_public_spending to the sum of these welfare
payments

5.​ Decrease self.reserves by this initial step_public_spending
6.​ If not the first step, allocate 10% of remaining self.reserves as a

budget for _execute_government_necessity_spending()
7.​ Decrease self.reserves by the amount spent on necessity goods

and add this amount to self.step_public_spending
8.​ Collect taxes:

a.​ self.step_tax_revenue = _collect_taxes()
(household income tax)

b.​self.step_corporate_tax_revenue =
_collect_corporate_taxes()

9.​ Increase self.reserves by total tax revenue
10.​Calculate other economic indicators:

_calculate_unemployment_rate(), self.GDP =
_calculate_gdp(), self.gini_coefficient =
calculate_gini_coefficient()

11.​Update self.previous_reserves

Outputs/State Variables Updated:

-​ All government financial and economic indicator state variables.
-​ (Indirectly) States of HouseholdAgents, PersonAgents, and

FirmAgents through transfers, taxes, and purchases.

50

Intermediary Firm Agent Submodels

1.​ Initial Workforce Population (_populate_initial_workforce)

Purpose: To hire the initial set of employees for the intermediary firm.

Inputs:

-​ target_total_employees: Desired total number of initial
employees.

-​ self.model.available_persons: Global list of PersonAgents.
-​ self.skill_types_to_hire: List of all skill types the firm aims to

hire.

Process:

1.​ Calculate the number of employees to hire per skill type to achieve a
balanced workforce

2.​ For each skill type in self.skill_types_to_hire:
a.​ Filter self.model.available_persons for candidates who

are job_seeking, have no employer, and match the current
skill_type

b.​ Randomly shuffle these candidates
c.​ Hire candidates until the target for that skill type is met or

target_total_employees is reached

Outputs/State Variables Updated:

-​ self.employees: List of PersonAgents employed
-​ self.num_employees: Updated count
-​ For hired PersonAgents: employer = self, job_seeking =

False, job_level = "entry", wage = 0 (wage is set
dynamically in the step method)

2.​ Receive Firm Demand (receive_firm_demand)

Purpose: To accumulate the costs (representing demand for its
services/inputs) submitted by other FirmAgents.

Inputs:

-​ cost: The amount of production cost received from a FirmAgent.

Process:

1.​ Increments self.demand_received_from_firms by cost

51

Outputs/State Variables Updated:

-​ self.demand_received_from_firms

3.​ Intermediary Firm Step (step)

Purpose: To process accumulated demand, set revenue, and distribute
wages to its employees. This is the main submodel for the intermediary firm.

Process:

1.​ Set self.revenue = self.demand_received_from_firms
2.​ If self.num_employees > 0, calculate wage_per_employee as

self.revenue / self.num_employees. Otherwise,
wage_per_employee is 0

3.​ Iterate through self.employees and set each PersonAgent.wage
to wage_per_employee

4.​ Reset self.demand_received_from_firms to 0 for the next step

Outputs/State Variables Updated:

-​ self.revenue
-​ PersonAgent.wage for its employees.
-​ self.demand_received_from_firms (reset).

52

3.​ RESULTS
As mentioned in the Initialization section, the biggest problem with this model is its initial
values. Due to the time limit on this project, the values are not fully calibrated to a level
where everything “works”. While some results are generally the same for every initial value
set and are representative of how the system works (demand, production levels), some
results are purely dependent on the initial value set (markup levels, profit levels), this section
will only demonstrate the former. For all results, the first 10 steps’ results should be ignored
as stated in the Initialization section. It should be noted that each graph shown below is
derived from the exact same simulation run.

Figure 3.1 shows the average demand Firms receive over time. The graph shows that
“necessity” items are demanded more than “luxury” items, which is a realistic pattern.

53

In correlation with Figure 3.1 graph, as the average demand rises, production levels also rise
for “necessity” items. This is an intended feature of the model, and represents how Firms
react to demand from their consumers.

As expected, Figure 3.3 shows that produced units go up for “necessity” items and down for
“luxury” items. This directly correlates with Figure 3.2. It should be noted that the actual
amount of units produced is explicitly determined as an initial value, meaning the difference
in unit count is not determined by the simulation but the simulation runner.

54

The model calculates GDP as total production from all Firms in a single step. While the GDP
value might not suit real-world examples, it directly correlates with the production graphs.

55

Due to how the initial values were given, “luxury” Firms are at a loss while “necessity” Firms
are profiting. The model is designed so that Firms at a loss fire their employees to get out of
a slump. As seen in Figure 3.6, the unemployment rate constantly goes up due to “luxury”
Firms’ firing cycles.

56

Because of the firings, the distribution of income brackets naturally change. Less employed
people means less income, which means more people in the lower income brackets. As
seen in Figure 3.7, “low” income bracket Households rise as the simulation comes to an end.

The change in income brackets also affects the Gini score of the simulation, where inequality
in the system increases.

57

The Phillips Curve definition states that as inflation increases, unemployment drops. In this
simulation run, even with distorted inflation rates, the Phillips Curve doesn’t seem to exist.

Figure 3.10 demonstrates the way the skill distribution across job levels works in the model.
Higher-skilled Persons are naturally less in the entire system, and lower-skilled Persons are
more, thus the amount of entry level job positions are the most in the labor market.

58

As mentioned in the Submodels section, welfare is calculated as
self.household_step_income_posttax*0.3 + self.household_step_expense*0.2
+ self.total_household_savings*0.2 + self.health_level*0.3​
​
Naturally, higher income Households have the highest welfare score, where low income
Households have the lowest welfare score.

4.​ CONCLUSION
This report has presented a comprehensive description of Economixim, an agent-based
model designed to simulate a national economy, adhering to the ODD (Overview, Design
Concepts, Details) protocol. The primary goal of this project was to design a virtual
laboratory to understand economic systems, explore the complex interactions that occur
between micro-level players in an economy, and monitor the emergent behaviors that are
generated through these interactions.

As the results indicate, the system-level implementation and the logic behind the system
works as intended and creates meaningful and surprising results. However, it is not without
its problems. As mentioned in the Initialization chapter, the most difficult part of models such
as this one is what values the simulation starts off with and how it is calibrated. The model is
structured such that simulations are anticipated to demonstrate coherent dynamic patterns
(such as convergence or cyclical behavior), though the nature of these numerical outcomes
will be highly sensitive to initial parameterization. Real-world economies are not
computational values, they are so-called “free” markets that generate their values
intrinsically, over a long period of time, which means finding the “perfect” values also require

59

some sort of natural process. Learning mechanisms such as RL are a good solution to this
problem. Values can be tried and tested thousands of times to find a good balance that
researchers will be content with.

Another limitation of this project is in its granularity, which is somewhat paradoxical: it offers
more granularity than existing models thanks to the attributes each agent has and the
existence of a complex Person agent, yet still falls short of what’s needed to accurately
simulate the real world. For example, as discussed in the Purpose section, the model
currently does not simulate demographic occurrences such as death, birth, and marriage.
The model also lacks a supply chain system, a mechanic where Firms can produce new
product lines, and a banking system; things necessary for a “realistic” economy simulation.
These limitations naturally point towards several promising routes for improvement.
Enhancing this model would require the implementation of such features and better
calibration than its current state. For example, developing a banking sector would allow for
the exploration of credit cycles and financial stability, integrating international trade would
open the model to global economic influences, and so on.

Economixim serves as a decent starting point for economic ABMs aiming for advanced
granularity. With further development, Economixim has the potential to grow into a more
robust tool for both theoretical and qualitative exploration of economic policy impacts and the
understanding of human decision-making.

60

REFERENCES
Cited

-​ Dawid, H., & Delli Gatti, D. (2018). Agent-based macroeconomics. In C. Hommes &
B. LeBaron (Eds.), Handbook of Computational Economics (Vol. 4, pp. 63–156).
Elsevier.

-​ Heckbert, S., Baynes, T., & Reeson, A. (2010). Agent-based modeling in ecological
economics. Annals of the New York Academy of Sciences, 1185(1), 39–53.

-​ Macal, C. M., & North, M. J. (2009). Agent-based modeling and simulation.
Proceedings of the 2009 Winter Simulation Conference (WSC) (pp. 86–98).

-​ Tesfatsion, L. (2006). Agent-based computational economics: A constructive
approach to economic theory. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of
computational economics (Vol. 2, pp. 831–880). Elsevier.

-​ Farmer, J. D., & Foley, D. (2009). The economy needs agent-based modelling.
Nature, 460(7256), 685–686.

-​ Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical
Sociology, 1(2), 143–186.

-​ Epstein, J. M., & Axtell, R. (1996). Growing artificial societies: Social science from the
bottom up. Brookings Institution Press.

-​ Glielmo, A., Devetak, M., Meligrana, A., & Poledna, S. (2025). BeforeIT.jl:
High-Performance Agent-Based Macroeconomics Made Easy. arXiv preprint
arXiv:2502.13267.

-​ Delli Gatti, D., Fagiolo, G., Gallegati, M., Richiardi, M., & Russo, A. (2018).
Agent-based models in economics: A toolkit. Cambridge University Press.

-​ Assenza, T., Delli Gatti, D., & Grazzini, J. (2015). Emergent dynamics of a
macroeconomic agent based model with capital and credit. Journal of Economic
Dynamics and Control, 50, 5–28.

-​ Osoba, O. A., Vardavas, R., Grana, J., Zutshi, R., & Jaycocks, A. (2020).
Policy-focused agent-based modeling using RL behavioral models. arXiv preprint
arXiv:2006.05048.

-​ Brusatin, S., Padoan, T., Coletta, A., Delli Gatti, D., & Glielmo, A. (2024). Simulating
the Economic Impact of Rationality through Reinforcement Learning and
Agent-Based Modelling. Proceedings of the 5th ACM International Conference on AI
in Finance (ICAIF '24) (pp. 159–167). Association for Computing Machinery.

-​ Zheng, S., Trott, A., Srinivasa, S., Naik, N., Gruesbeck, M., Parkes, D. C., & Socher,
R. (2020). The AI Economist: Improving Equality and Productivity with AI-Driven Tax
Policies. arXiv preprint arXiv:2004.13332.

-​ Dwarakanath, K., Vyetrenko, S., Tavallali, P., & Balch, T. (2024). ABIDES-Economist:
Agent-Based Simulation of Economic Systems with Learning Agents. arXiv preprint
arXiv:2402.09563.

-​ Salle, I., Yıldızoğlu, M., & Sénégas, M.-A. (2013). Inflation targeting in a learning
economy: An ABM perspective. Economic Modelling, 34, 114–128.

-​ Yang, Y., Zhang, Y., Wu, M., Zhang, K., Zhang, Y., Yu, H., Hu, Y., & Wang, B. (2025).
TwinMarket: A Scalable Behavioral and Social Simulation for Financial Markets. arXiv
preprint arXiv:2502.01506.

61

-​ Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D.
L., Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A.,
Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M.-S., Stillman, R. A., Thiele,
J. C., & Ayllón, D. (2020). The ODD protocol for describing agent-based and other
simulation models: A second update to improve clarity, replication, and structural
realism. Journal of Artificial Societies and Social Simulation, 23(2), 7.

Uncited

-​ North, M. J., Collier, N. T., & Vos, J. R. (2006). Experiences Creating Three
Implementations of the Repast Agent Modeling Toolkit. ACM Transactions on
Modeling and Computer Simulation, 16(1), 1–25.

-​ ter Hoeven, E., Kwakkel, J., Hess, V., Pike, T., Wang, B., rht, & Kazil, J. (2025). Mesa
3: Agent-based modeling with Python in 2025. Journal of Open Source Software,
10(107), 7668. https://doi.org/10.21105/joss.07668

-​ Wilensky, U. (1999). NetLogo. Center for Connected Learning and Computer-Based
Modeling, Northwestern University. Evanston, IL.

-​ Arthur, W. B. (2021). Foundations of complexity economics. Nature Reviews Physics,
3(2), 136–145.

-​ Holland, J. H., & Miller, J. H. (1991). Artificial Adaptive Agents in Economic Theory.
The American Economic Review, 81(2), 365–370.

-​ Jang, I., Lee, D., Kim, D., & Son, Y. (2018). An Agent-Based Simulation Modeling
with Deep Reinforcement Learning for Smart Traffic Signal Control. Proceedings of
the 2018 International Conference on Information and Communication Technology
Convergence (ICTC) (pp. 1028-1030). IEEE.

-​ Lalmohammed, S. (2025). Welfare modeling with AI as economic agents: A
game-theoretic and behavioral approach. arXiv preprint arXiv:2501.15317.

-​ Pangallo, M., & del Rio-Chanona, R. M. (2024). Data-Driven Economic Agent-Based
Models. arXiv preprint arXiv:2412.16591.

-​ Poledna, S., Miess, M. G., Hommes, C., & Rabitsch, K. (2023). Economic forecasting
with an agent-based model. European Economic Review, 151, 104306.

-​ Stiglitz, J. E. (2018). Where modern macroeconomics went wrong. Oxford Review of
Economic Policy, 34(1-2), 70–106.

-​ Vargas-Pérez, V. A., Mesejo, P., Chica, M., & Cordón, O. (2022). Deep reinforcement
learning in agent-based simulations for optimal media planning. Information Fusion,
87, 1-18.

62

	ABSTRACT
	ÖZET
	1.​INTRODUCTION
	2.​MODEL DESCRIPTION
	2.1.​OVERVIEW
	2.1.1.​PURPOSE AND PATTERNS
	Purpose
	Patterns

	2.1.2.​ENTITIES, STATE VARIABLES, AND SCALES
	Entities & State Variables

	
	Scales

	2.1.3.​PROCESS OVERVIEW AND SCHEDULING

	2.2.​DESIGN CONCEPTS
	Basic Principles
	Emergence
	Adaptation
	Objectives
	
	​Learning
	Prediction
	Sensing
	Interaction
	Stochasticity
	
	Collectives
	Observation

	2.3.​DETAILS
	2.3.1.​INITIALIZATION
	2.3.2.​INPUT DATA
	2.3.3.​SUBMODELS

	3.​RESULTS
	4.​CONCLUSION
	REFERENCES

